Minha Visão

2100-2149 Future Timeline | Timeline | Technology | Singularity | 2020 | 2050 | 2100 | 2150 | 2200 | 21st century | 22nd century | 23rd century | Humanity | Predictions

cupom com desconto - o melhor site de cupom de desconto cupomcomdesconto.com.br






intelligence is being vastly amplified by AI

Ubiquitous, large-scale automation has led
to vast swathes of human employees being replaced by virtual or robotic
counterparts. Strong AI now occupies almost every level of business,
government, the military, manufacturing and service sectors.

than being separate entities, these AIs are often merged with
human minds, greatly extending the latter’s capability. For instance,
knowledge and skills can now be downloaded and stored
directly within the brain. As well as basic information and data,
this includes many physical abilities. A person can learn self-defence,
for example, become an expert in any sport, or be taught to operate
a new vehicle, all within a matter of seconds.

The world
has been transformed by this fusion of people and machines. The vastly
greater power of AI means that it has become, simultaneously, both
master and servant to the human race.

The benefits
of this human-AI merger require the extensive use of implants, however
– something which a significant segment of the population still refuses
to accept. Compared to transhumans, these non-upgraded humans are becoming
like cavemen – thousands of years behind in intellectual development.* Unable to comprehend the latest technology, the world around them appears
“fast” and “strange” from their increasingly limited
perspective.* This
is creating a major division in society.




floating cities are roaming the oceans

At the dawn of the 22nd century, many of the world’s cities lie partially submerged due to rising sea levels.* Despite some attempts to build flood defences, even famous locations – such as New York, London, Hong Kong, Shanghai and Sydney – have been affected. With over 10% of the world’s population living on coastlines, hundreds of millions have been forced to migrate.

While many citizens have abandoned their homelands, a growing number have adopted a new means of living which does away with national boundaries altogether. This comes in the form of floating, artificial islands – entirely self-sufficient and able to cruise around the world indefinitely.*

These ships provide comfort, safety and security, in stark contrast to the upheaval and chaos experienced by many land dwellers. In addition to a continuous supply of food and freshwater, various facilities are available including virtual reality suites, state-of-the-art android servants/companions, swimming pools, landing pads for anti-grav vehicles and much more. Carefully maintained arboretums with real trees can also be found on board (flora which is becoming increasingly rare these days).


Credit: Vincent
Callebaut architects


These giant, amphibious ships are especially popular in Southeast Asia, which has been hit hard by the effects of climate change. Some of the largest craft house upwards of 100,000+ residents. Whole new cultures are forming on these “micro nations” – often based around particular themes, lifestyles, ethics or belief systems that appeal to a specific demographic.

Seasteading in general has exploded in recent decades. In addition to city ships, permanent settlements have appeared along the flooded coasts of many regions. This often takes the form of recovered infrastructure rebuilt to accommodate rising sea levels. In the more prosperous nations, cities may be rebuilt using massive anchored pontoons or other hydrostatic devices. More commonly, entirely new cities are devised by governments to accommodate the displaced populations of coastal cities.

New, larger and more advanced versions of the Energy Islands built in earlier decades make up the majority of these settlements. Some consist of huge artificial archipelagos, stretching for tens of kilometres. Units are often covered in natural plant life, in addition to hi-tech systems for carbon sequestration.


Credit: Shimizu Corporation


As well as CO2 capture, offshore settlements play a role in scrubbing general air and water pollution, acting as giant filters that remove trash and chemicals from the ocean. These materials can then be recycled and put to new use. This is now having a significant impact in reversing the enormous damage that has accumulated over the centuries from ocean acidification, plastic debris, nitrogen and other man-made waste products.**

Needless to say, these settlements, both stationary and roaming, are entirely carbon neutral. Power is produced from a combination of OTEC plants, offshore wind farms, tidal and wave plants, solar arrays, and other means. Some even utilise fusion. Food is grown and water desalinated locally. These ocean settlements are themselves among the earliest adopters of the so-called “post-growth economy”. This had emerged out of the converged crises of resource depletion and advanced automation that began during the mid-late 21st century, and seeks to minimise the impact of human economic activity on the environment.


Credit: Shimizu Corporation



Penguins face extinction

centuries, Emperor Penguins were the best-loved and most recognised
symbol of Antarctica. By the early 22nd century, their numbers have
dwindled to almost nothing because of melting sea ice, depletion of
krill and industrial activity. Small populations continue to exist, by adapting
their breeding habits, but even these will eventually disappear.*


© Bernard
Breton | Dreamstime.com



of Mars is underway

With space travel becoming low cost (now just a few cents per kilogram of payload),* and journeys between planets now relatively routine, serious plans
are underway for the transformation of Mars, with the
ultimate goal of making it habitable for humans. Exactly who should be
given control of Mars and its resources – or if the planet should have independence – is the subject of much debate and speculation
around this time.





Personal health pods are common in homes

In the early 22nd century, many functions previously performed in clinical settings can be automated and supplied to patients at home. Full body scanners providing a wide range of diagnoses and treatments are now a common household appliance, relieving the burden on hospitals.*

These devices come in a variety of form factors, but typically consist of a cylindrical capsule about two metres in size. The occupant either stands (in the case of vertical models) or lies down (in a horizontal configuration)* for the procedure, which takes a matter of seconds. Cameras with sub-nanometre precision obtain images at trillions of frames per second, panning from head to toe while tracking and adjusting for even the slightest movement.

Every region of the body undergoes real-time 3D analysis and is “pinged” for any high-risk changes or abnormalities since the previous scan, to determine spots that need further attention. A summary is then provided to the user, ranked in order of severity. For simple or benign problems, the machine can recommend a drug or other medication. For issues requiring surgery, treatment can be provided by robotic arms/tools, lasers, or nanorobots injected and then guided via a combination of magnets and their own tiny motors. For a transhuman individual, who may already have extensive implants and upgrades, many of these remedies may be unnecessary.

While the medical capabilities of 2110 are vastly improved when compared to a hundred years previously, not every aspect of biology is fully understood yet. Certain rare and unusual conditions, for example, continue to persist in the population and require more specialist intervention than these home-based machines can provide. For the most part, however, treatment of once life-threatening illnesses is now relatively routine. In subsequent decades, a further proliferation of these health pods in tandem with new advances in science leads to cancer mortality being largely eliminated in many countries.*




fields are in military use

combination of several unique technologies, stacked together in layers, has led to a radical new form of protective shielding.* To observers from the previous century, this would resemble the “force
fields” depicted in science fiction movies. When activated, it
provides an instant, near-impenetrable field withstanding hits from
all but the most powerful weaponry.

READ  This “Portal” Lets You Beam a Hologram of Yourself Into Video Calls

The outer
layer consists of a supercharged plasma window, shaped into a dome or
sphere by electromagnetic fields. This is hot enough to vaporise most
incoming metals. A secondary
layer underneath contains millions of curved laser beams, producing
a high-energy web that captures projectiles fast or powerful enough
to bypass the plasma window. A third
layer consists of a “lattice” made from trillions of carbon
nanotubes. These microscopic structures are woven together in an instant,
forming a diamond-hard shell repelling objects missed by the other two
layers. If necessary, this can be extended to cover a larger perimeter,
at the cost of decreased strength. Conversely, it can be reduced in
size to provide an even denser and more durable barrier.

The layers
described above can protect against the majority of bullets, bombs and
projectiles. However, they are almost useless against lasers. A fourth
and final layer takes care of this problem. This uses photochromatic particles,
which change their properties when exposed to laser light, effectively
neutralising most directed-energy weapons. An early form of this technology
was seen a century previously, with sunglasses that changed colour when
exposed to sunlight.

In addition
to warzones, these multilayered force fields are used in
a range of other situations. National borders, for example, are more
secure – as are many sources of food and water production. Corporate
spaces and luxury dwellings owned by the rich are also utilising them.
A number of satellites are being fitted with this technology too.




Large-scale arcologies are emerging as an alternative to traditional cities

The global convergence of environmental issues and resource depletion has forced humanity to drastically readdress the way urban areas are designed. The refugee crisis that emerged in the mid-21st century has now largely subsided, with much of civilization having been relocated to the polar regions of Northern Europe, Russia, Canada and Western Antarctica. In order to accommodate so many people in such a smaller area, cities have become increasingly dense and self-contained.

However, decades of concerted geoengineering efforts have led to success in stabilising global temperatures. Combined with ongoing population pressures, this has prompted governments to begin repopulating some of the abandoned regions in more central latitudes. Despite this progress, most countries still face the problems of resettling hyper-arid, ecologically-ravaged environments. As such, long-hypothesised “arcologies” have begun to emerge as a radical departure from traditional urbanism, condensing an entire city into one massive structure.*

A precedent for these mega-structures could be seen as far back as the 2020s, with construction of the first centrally-planned, truly sustainable cities.** Later in the 21st century, these principles were adapted for the development of single structures – resulting in supertall skyscrapers that combined vertical farming with residential and commercial space, recycling and production systems for energy, water and other resources.*

By the 22nd century, these towers have evolved into some of the mightiest structures ever built: of such immense volume that some cover several kilometres in girth, typically rise over 1.5 kilometres in height* and accommodate millions of people.** Some are partially or fully merged into mountainsides and other landscapes – resembling enormous ant colonies, and living up to their portmanteau of “architecture” and “ecology”. This scale of engineering has been made possible through advances in materials science, with carbon nanotubes utilised to cope with the massive forces involved. The sheer size and strength of arcologies makes them virtually immune to earthquakes, hurricanes and other disasters.

Each of these self-contained structures holds everything it needs for human survival. Automation is ubiquitous with intelligent robots managing almost all construction and maintenance.* Highly efficient transport systems are located throughout to move travellers horizontally, vertically or diagonally. Advancements in elevator technology have made lifts capable of whisking riders up in a single trip – no matter what height – as opposed to changing halfway up.* This has been accomplished through improved cable design and, more recently, the use of electromagnetic propulsion.* This kind of hyper-dense urban environment allows movement around a city at speeds unheard of in previous centuries.

These radical new designs exemplify an overall trend in recent human development: low environmental impact. Globally, cities and their connecting infrastructure are slowly being retracted, giving over more land to nature. Advances in transportation and civil engineering, combined with nano-scale manufacturing, are enabling humans to operate with little or no impact on the environment. Though classically designed cities still exist, the arcology represents a fundamental shift in the balance between humans and nature.




is practical

on the scale of quadrillionths of a metre (10-15)
has recently emerged.* This is three orders of magnitude smaller than picotechnology and six orders of magnitude smaller than nanotechnology.

at this scale involves working directly with the finest known structures
of matter – such as quarks and strings – to manipulate the properties
of atoms. This development is a further step towards macro-scale teleportation,
i.e. transportation of objects visible to the naked eye. Significant
breakthroughs in anti-gravity and force field generation will also result
from this.

area that will see major progress is in materials technology. For example,
metals will be produced which are capable of withstanding truly enormous
pressures and tensile forces. The applications for this will be endless,
but perhaps one of the most exciting areas will be in the exploration
of hostile environments – such as probes capable of travelling within
the Sun itself, and tunnelling machines that can penetrate the Earth’s
crust into the layers of magma beneath. Longer term, this development
will pave the way for interstellar ships and the massive forces involved
in lightspeed travel.

Other more
exotic materials are becoming possible – including wholly transparent
metals, highly luminous metals, frictionless surfaces, and ultradense
but extremely lightweight structures. As with
many areas of science, femtoengineering is being guided by advanced
AI, which is now trillions of times more powerful than
unaided human intelligence.




control of earthquakes and tsunamis

now, geophysicists have mapped the entirety of the Earth’s crust and
its faults, extending some 50 km (30 mi) below the surface. Computer
simulations can forecast exactly when and where an earthquake will occur
and its precise magnitude. With a “scheduling” system now
in place, comprehensive preventative measures can be taken against these

For instance,
people know when to stay out of the weakest buildings, away from the
bridges most likely to collapse and otherwise away from anything that
might harm them. Rescue and repair workers can be on duty, with vacations
cancelled and extra workers brought in from other areas. Workers can
be geared up with extra equipment ordered in advance to fix key structures
that may fail in an earthquake. Freeways can be emptied. Dangerous chemical
freight can be prevented from passing through populated areas during
the quake. Aircraft can be stopped from approaching a potentially damaged
runway. Weak water reservoirs can have their water levels lowered in
advance. Tourists can be made to stay away. All of these measures can
substantially reduce casualties and economic disruption.

some nations are going one step further and creating additional systems,
in the form of gigantic engineering projects. To protect the most earthquake-prone
regions, a network of “lubrication wells” is being established.
These man-made channels penetrate deep underground, to the very edge
of the mantle. They work by injecting nanotechnology-based fluid or
gel into fault lines, making it easier for rock layers to slide past
each other. Explosive charges can also be dropped at strategic points,
in zones where the lubrication might be less effective. Instead of sudden,
huge earthquakes, the network induces a series of much smaller earthquakes.
Using this method, an earthquake of magnitude 8.0 can be buffered down
to magnitude 4.0 or lower, causing little or no damage to structures
on the surface. In coastal locations, tsunamis can also be prevented.

READ  Stuff in caterpillar spit warns cowpeas of an attack

This is
a carefully controlled process – requiring heavy use of AI – and is
by no means perfect. There are complex legal and liability issues in
the event of accidents. For instance, damage from human-induced earthquakes
cannot be excused as an “act of God.”

these technical and legal hurdles, it would seem that mankind is gaining
the power to control even the most destructive aspects of nature.*




solar system is passing through a million degree cloud of gas

Sun is approaching a boundary between the Local Cloud of interstellar
gas and another cloud of extremely turbulent gas – the latter is the
remnants of supernova explosions that occurred millions of years ago.

The density
of this medium is sufficiently low to pose no threat to Earth or any
other planets. The heliosphere is reformed slightly, and the level of
cosmic radiation entering the magnetosphere increases, but nothing more.

spacecraft and satellites may be damaged by these high energy particles
unless they are upgraded.*


Credit: SRC/Tentaris,ACh/Maciej Frolow




uploading enters mainstream society

cupom com desconto - o melhor site de cupom de desconto cupomcomdesconto.com.br

Adequate hardware to support human-level intelligence was available
as far back as the 2020s, thanks to the exponential progress of Moore’s
Law.* This made it possible to form
simulations of neural processes.* However,
the underlying software foundation required for mind uploading
proved to be a vastly greater challenge. Full transfer of human consciousness
into artificial substrates posed enormous technical difficulties, in
addition to raising ethical and philosophical issues.

The sheer
complexity of the brain, and its inherent fragility – along with the
many legislative barriers that stood in the way – meant that it was
nearly a century before such technology reached the mainstream.

Some breakthroughs
occurred in the latter decades of the 21st century, with partial transfer
of memories and thought patterns, allowing some limited experience of
the mind uploading process. However, it was only through the emergence
of picotechnology and strong AI that sufficiently detailed scanning
methods became available. This new generation of machines, being orders
of magnitude faster and more robust, finally bridged the gap between
organic human brains and their synthetic equivalents.

tested on monkeys, the procedure was eventually offered to certain marginalised
people including death row inmates and terminally ill patients. Once
it could be demonstrated as being safe and reversible, the project garnered
a steady stream of free and healthy volunteers, tempted by this new
form of computerised immortality.

Years of
red tape and legislation followed, including some of the strictest regulations
ever enacted into law. Religious and conservative groups voiced their
objections to what they saw as a fundamental violation of God’s will.
At times, this threatened to postpone the technology indefinitely. Eventually
though, like so many other breakthroughs in science, the zeitgeist moved
on. The level of demand for mind uploading proved to be enormous, and
the treatment became widely available in the 2120s.

citizens have access to special clinics in which their biological brains
can be literally discarded in favour of artificial ones. Rather than
simply “duplicating” a mind, the machine physically shifts
the consciousness, like a sponge soaking up water. The brain is gradually
replaced – piece by piece – so the original personality remains intact
during the transition. This vital aspect of the procedure assuages the
fear which many have of losing their identity.

For the
wealthiest individuals, entire new bodies can be grown, into which the
synthetic brains can be transplanted. These bodies may themselves be
artificial, with options for partially cyborg or fully robotic replacements.
Externally, they are often indistinguishable from real human bodies,
but include many hi-tech add-ons and internal features boosting physical
and mental abilities.

Not everyone
is opting for these types of treatments, however. A significant percentage
view them with extreme suspicion, as though somehow immoral and dehumanising.
With each passing year, society is becoming increasingly fractured,
with an ever-widening divide between those who seek to enhance themselves,
and those who prefer to eschew such technology.


© Kts | Dreamstime.com



civilian settlement of the Moon is underway

a result of various new space elevators, huge numbers of Earth’s
citizens now have rapid, affordable and safe access to space. Dozens
of permanent Moon colonies have been established. Nanotechnology self-assemblers enable these habitats
to be constructed in a matter of hours or days.* Most are concentrated in the southern polar region, which has greater
access to water.*

in genetic engineering mean that humans can be fully adapted to the
gravity of the Moon. In any case, scientists are developing a form of
artificial gravity that will soon become available.

In addition
to basic exploration and surveying, the main occupations for colonists
at the moment are scientific and technological research.
Almost all manual/physical tasks are handled by robots, giving more leisure time for the human

is now a booming industry, with many thousands of people arriving on
the Moon’s surface each year for guided tours, even though VR simulations
can recreate the Moon’s environment in perfect detail. The most popular destinations are
Mons Huygens (the highest mountain), Tycho (a prominent crater visible
from Earth) and the Apollo landing sites.

A very
large telescope is also operational, for long-distance astronomical
observations. The lack of atmosphere and other conditions gives it a
tremendous advantage over Earth-based telescopes.*


© Luca
Oleastri | Dreamstime.com




A North American Union is taking shape

21st century witnessed a dramatic rebalancing of America’s power,
with much of its influence being lost to China and India. However, there were also developments
closer to home, with a remodelling of the relationship to her neighbours.

A gradual
stagnation of the white population, and simultaneous growth of Hispanics,
offered the first hints of what lay ahead. This trend would continue
long into the future, with Latin American immigrants eventually dominating
the southwestern states and Mexico becoming a fully developed nation.*

this, Canada began to experience a population and economic surge almost
unparalleled in its history. Soaring global temperatures were providing
access to a treasure trove of natural resources, previously locked
up in the frozen north – even as the US was being ravaged by drought,
flooding, wildfires and other adverse conditions. With Canada’s environment
now vastly more favourable, newcomers flocked in their millions to
its cheap, wide, green lands.*

decades of further homogenisation and cultural interchange between
each of the three nations, US power has continued to wane, both at
home and abroad. Meanwhile, national borders are becoming increasingly
irrelevant in the world at large. Ongoing globalisation, the birth
of a single world currency, the dominance of AI
in government, a defection of citizens to online “virtual states” (making physical territories less important),
and other technological advances have all contributed to this. Europe
has already formed its own superstate, while parts of Asia are now
converging too.

In light
of all this, the USA begins talks with Canada regarding a North American
Union. With a more globalised, supranational sentiment emerging, they
are gradually unified under a single political system – strengthening
the power and influence of both.

READ  MSN Incêndios Jornalistas, Substitui-Los por AI

eventually joins too. In later decades, further expansion of the union
occurs with even Cuba, the Dominican Republic and other parts of the
Caribbean seeing integration. By the end of the 22nd century, the
whole of North and South America has joined to become the “American
Union”, paving the way for a truly united world government in
the 23rd century.


Credit: El_bart089



“Perfect” simulations of one cubic metre

In the early 21st century, supercomputers used a simulation technique called lattice quantum chromodynamics, performing calculations by essentially dividing space-time into a four-dimensional grid. With a resolution based on the fundamental physical laws, they could simulate only a tiny portion of the universe accurately – on the scale of one 100-trillionth of a metre, slightly larger than the nucleus of an atom.*

At best, algorithms were able to demonstrate the strong nuclear force among protons and neutrons and its effect on nuclei and their interactions. This was achieved in femto-sized universes where the space-time continuum was replaced by a lattice, with spatial and temporal sizes on the order of several femto-metres or fermis and whose lattice spacings (pixelations) were fractions of fermis. Lattice gauge theory revealed new insights into the nature of matter, but was still fairly limited in scope.



However, computer power and information technology in general were growing exponentially. In fact, they had followed a remarkably smooth and predictable trend throughout the 20th century.* This growth rate continued its consistent path in the 21st and 22nd centuries.*

By 2140, a region of space measuring 1 cubic metre can be simulated in near-perfect detail, down to the smallest quantum unit.* This landmark in physics has profound applications. It soon paves the way for larger simulations of two metres, providing absolutely accurate representations of the entire human body. Scientific experiments on these and similar-sized objects can now be literally as controlled as they can be – with data obtained far more reliably and much faster than in real-world and real-time settings.

Holodeck-style environments become possible in the latter half of this century, as these simulations continue to increase in detail and spatial extent, reaching tens of metres and greater. This offers a level of realism that was unavailable with full-immersion virtual reality. To an observer placed in these miniature universes, it would be almost impossible to distinguish reality from fantasy.







1 “An analysis of the history of technology shows that technological
change is exponential, contrary to the common-sense ‘intuitive linear’
view. So we won’t experience 100 years of progress in the 21st century
— it will be more like 20,000 years of progress (at today’s rate).
The ‘returns,’ such as chip speed and cost-effectiveness, also increase
exponentially. There’s even exponential growth in the rate of exponential
growth. Within a few decades, machine intelligence will surpass human
intelligence, leading to the Singularity — technological change
so rapid and profound it represents a rupture in the fabric of human history.
The implications include the merger of biological and nonbiological intelligence,
immortal software-based humans, and ultra-high levels of intelligence…”
Singularity is Near
, by Ray Kurzweil (2005)

2 Lanier’s Singularity, H+ Magazine:
Accessed 1st September 2010.

3 See Sea Levels.

4 Lilypad, a floating ecopolis for climate refugees, vincent.callebaut.org:
Accessed 16th July 2009.

5 Green Float,
Shimizu Corporation:
Accessed 8th January 2014.

6 Marine pollution, Wikipedia:
Accessed 8th January 2014.

7 Emperor penguins could be virtually extinct by 2100, scientists say,
Accessed 19th September 2009.

8 Launch costs to low Earth orbit, 1980-2100,
Future Timeline:
Accessed 8th May 2020.

9 Samsung predicts the world 100 years from now,
Future Timeline Blog:
Accessed 9th May 2020.

10 The Med-Bay in Elysium (2013),
Accessed 9th May 2020.

11 Cancer deaths in the United States, 2000-2150,
Future Timeline:
Accessed 9th May 2020.

12 “Force fields” are more than just science fiction. They are
perfectly possible within the laws of physics, according to Michio Kaku
– one of the world’s leading futurists. He predicts use of this technology
“within a century or so”.
See Physics of the Impossible, by Michio Kaku:
Accessed 9th September 2009.

13 “According to Discovery Channel’s documentary on the pyramid it would be complete within the year 2110.”
See New Mega-City Challenge – Concept,
Accessed 1st December 2013.

14 Masdar City,
Accessed 9th June 2016.

15 Five real-world arcologies under construction,
Accessed 1st December 2013.

16 See 2050.

17 New skyscraper technology allows lifts to reach over 1 km,
Future Timeline Blog:
Accessed 1st December 2013.

18 “One of the most radical ideas is to build vast numbers of “superskyscrapers”. Far taller than conventional skyscrapers, these buildings will gradually come to dominate cities, from London to Moscow, and house millions of people who currently live in the countryside or the suburbs.”
The way we’ll live next
The Telegraph:
Accessed 3rd January 2018.

19 The Tallest 20 in 2020: Entering the Era of the Megatall,
Council on Tall Buildings and Urban Habitat:
Accessed 1st December 2013.

20 See 2100.

21 New skyscraper technology allows lifts to reach over 1 km,
Future Timeline Blog:
Accessed 1st December 2013.

22 “A smart though far-off solution, Wood says, would be to replace cabled elevators with electromagnetically propelled cars. Occupants could be strapped in, rather like on theme park rides, and whisked to their in-building destinations through shafts running horizontally as well as vertically. ‘That would be the single biggest breakthrough in tall buildings,’ Wood says. ‘The minute you have elevators go horizontal, you can reduce the number of shafts in the building. You could design one with just two shafts and have 80 cars working in a system where they pass each other.'”
Taller: How Future Skyscrapers Will Beat the Burj Khalifa,
Popular Mechanics:
Accessed 1st December 2013.

23 The Age of Spiritual Machines, by Ray Kurzweil (1999).
Accessed 20th June 2009.

24 “… Perhaps a hundred years from now, geophysics will have mapped
the faults in Earth’s crust and geological engineers will have installed
lubrication wells to modulate the tectonic-induced slippage so as to reduce
sudden, large shocks.”
See Can earthquakes be tamed?, MSNBC:
Accessed 11th June 2010.

25 Ribbon at Edge of Our Solar System: Will the Sun Enter a Million-Degree
Cloud of Interstellar Gas?
, Science Daily:
Accessed 15th July 2010.

26 The Singularity is Near, by Ray Kurzweil (2005)
Accessed 19th July 2009.

27 See 2025.

28 3-D Printing Device Could Build Moon Base from Lunar Dust, Space.com:
Accessed 18th April 2010.

29 Now It’s Official: There Is Water on the Moon, TIME:
Accessed 18th April 2010.

30 Giant Telescope Mirrors For The Moon Could Be Made With Carbon, Epoxy
And Lunar Dust,
Science Daily:
Accessed 18th April 2010.

31 The Next 100 Years: A Forecast for the 21st Century, George Friedman:
Accessed 25th October 2009.

32 Could global warming turn Canada into a superpower?, CTV News:
Accessed 3rd January 2018.

33 Do we live in a computer simulation? Researchers say idea can be tested, Future Timeline Blog:
Accessed 10th January 2013.

34 Exponential Growth of Computing, Singularity.com:
Accessed 10th January 2013.

35 The Singularity is Near, by Ray Kurzweil:
Accessed 10th January 2013.

36 Constraints on the Universe as a Numerical Simulation, Silias R. Beane. et al., University of Washington:
Accessed 10th January 2013.


⇡  Back to top



cupom com desconto - o melhor site de cupom de desconto cupomcomdesconto.com.br

Deixe um comentário

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *