Minha Visão

2100-2149 Future Timeline | Timeline | Technology | Singularity | 2020 | 2050 | 2100 | 2150 | 2200 | 21st century | 22nd century | 23rd century | Humanity | Predictions

cupom com desconto - o melhor site de cupom de desconto cupomcomdesconto.com.br






intelligence is being vastly amplified by AI

Ubiquitous, large-scale automation has led
to vast swathes of human employees being replaced by virtual or robotic
counterparts. Strong AI now occupies almost every level of business,
government, the military, manufacturing and service sectors.

than being separate entities, these AIs are often merged with
human minds, greatly extending the latter’s capability. For instance,
knowledge and skills can now be downloaded and stored
directly within the brain. As well as basic information and data,
this includes many physical abilities. A person can learn self-defence,
for example, become an expert in any sport, or be taught to operate
a new vehicle, all within a matter of seconds.

The world
has been transformed by this fusion of people and machines. The vastly
greater power of AI means that it has become, simultaneously, both
master and servant to the human race.

The benefits
of this human-AI merger require the extensive use of implants, however
– something which a significant segment of the population still refuses
to accept. Compared to transhumans, these non-upgraded humans are becoming
like cavemen – thousands of years behind in intellectual development.* Unable to comprehend the latest technology, the world around them appears
“fast” and “strange” from their increasingly limited
perspective.* This
is creating a major division in society.


2100 technology timeline future 22nd century predictions



floating cities are roaming the oceans

At the dawn of the 22nd century, many of the world’s cities lie partially submerged due to rising sea levels.* Despite some attempts to build flood defences, even famous locations – such as New York, London, Hong Kong, Shanghai and Sydney – have been affected. With over 10% of the world’s population living on coastlines, hundreds of millions have been forced to migrate.

While many citizens have abandoned their homelands, a growing number have adopted a new means of living which does away with national boundaries altogether. This comes in the form of floating, artificial islands – entirely self-sufficient and able to cruise around the world indefinitely.*

These ships provide comfort, safety and security, in stark contrast to the upheaval and chaos experienced by many land dwellers. In addition to a continuous supply of food and freshwater, various facilities are available including virtual reality suites, state-of-the-art android servants/companions, swimming pools, landing pads for anti-grav vehicles and much more. Carefully maintained arboretums with real trees can also be found on board (flora which is becoming increasingly rare these days).


floating city 22nd century future timeline technology
Credit: Vincent
Callebaut architects


These giant, amphibious ships are especially popular in Southeast Asia, which has been hit hard by the effects of climate change. Some of the largest craft house upwards of 100,000+ residents. Whole new cultures are forming on these “micro nations” – often based around particular themes, lifestyles, ethics or belief systems that appeal to a specific demographic.

Seasteading in general has exploded in recent decades. In addition to city ships, permanent settlements have appeared along the flooded coasts of many regions. This often takes the form of recovered infrastructure rebuilt to accommodate rising sea levels. In the more prosperous nations, cities may be rebuilt using massive anchored pontoons or other hydrostatic devices. More commonly, entirely new cities are devised by governments to accommodate the displaced populations of coastal cities.

New, larger and more advanced versions of the Energy Islands built in earlier decades make up the majority of these settlements. Some consist of huge artificial archipelagos, stretching for tens of kilometres. Units are often covered in natural plant life, in addition to hi-tech systems for carbon sequestration.


future ocean colony 2100 technology timeline
Credit: Shimizu Corporation


As well as CO2 capture, offshore settlements play a role in scrubbing general air and water pollution, acting as giant filters that remove trash and chemicals from the ocean. These materials can then be recycled and put to new use. This is now having a significant impact in reversing the enormous damage that has accumulated over the centuries from ocean acidification, plastic debris, nitrogen and other man-made waste products.**

Needless to say, these settlements, both stationary and roaming, are entirely carbon neutral. Power is produced from a combination of OTEC plants, offshore wind farms, tidal and wave plants, solar arrays, and other means. Some even utilise fusion. Food is grown and water desalinated locally. These ocean settlements are themselves among the earliest adopters of the so-called “post-growth economy”. This had emerged out of the converged crises of resource depletion and advanced automation that began during the mid-late 21st century, and seeks to minimise the impact of human economic activity on the environment.


future ocean technology timeline 2100
Credit: Shimizu Corporation



Penguins face extinction

centuries, Emperor Penguins were the best-loved and most recognised
symbol of Antarctica. By the early 22nd century, their numbers have
dwindled to almost nothing because of melting sea ice, depletion of
krill and industrial activity. Small populations continue to exist, by adapting
their breeding habits, but even these will eventually disappear.*


emperor penguins endangered extinct 2100 global warming climate change threat
© Bernard
Breton | Dreamstime.com



of Mars is underway

With space travel becoming low cost (now just a few cents per kilogram of payload),* and journeys between planets now relatively routine, serious plans
are underway for the transformation of Mars, with the
ultimate goal of making it habitable for humans. Exactly who should be
given control of Mars and its resources – or if the planet should have independence – is the subject of much debate and speculation
around this time.


mars terraforming timeline future space exploration colonization earth




Room-temperature superconductors are in widespread use

By the early 22nd century,* room-temperature superconductors are embedded in myriad applications and have transformed much of the world’s infrastructure and road networks. Just some of the revolutionary advancements include lossless energy transfer, better containment of fusion energy, improved imaging for medical scans, and a variety of new hovering or flying vehicles that can glide effortlessly over the ground.

The discovery of superconductivity in 1911 revealed a set of physical properties observed in certain materials where electrical resistance vanishes at close to absolute zero. A further breakthrough in 1933 led to discovery of the Meissner effect – the ejection of magnetic field lines from the interior of the superconductor during its transition into a superconducting state, which occurs when the material is cooled by liquid nitrogen to −203°C (−334°F) and levitates a magnet.

Initially, scientists knew of only a few metals with vanishing electrical resistance at just above absolute zero, or −273°C (−460°F). In the 1980s, however, researchers discovered ceramic materials displaying this phenomenon above 35 K (−238°C, or –397°F). Further progress with ceramics in the 1990s demonstrated critical temperatures reaching above 150 K (−123°C, or –190°F), a substantial jump.


room temperature superconductors future timeline technology 22nd century
The Meissner effect. Credit: ktsdesign


In the early 21st century, incremental improvements occurred with various other materials, but all required tremendously high pressures comparable to the conditions in Earth’s outer core. Researchers finally achieved the “holy grail” of room-temperature superconductivity in 2020, with a compound at 15°C (59°F) using a diamond anvil cell at 269 gigapascals (GPa).*

In subsequent years and decades, research teams shifted their focus away from higher temperatures and onto efforts to reduce the immense pressures required for superconductivity. New techniques emerged for scaling up materials – from the nanoscale, to the microscale and larger. Eventually it became possible to combine a room temperature regime with materials both visible to the naked eye and stable at relatively low pressures.

Later in the 21st century, some of the world’s most powerful artificial intelligences made further discoveries, with even lower pressures. Ultimately, these stable states matched the Earth’s atmosphere at sea level. The next critical step involved the perfection of mass production methods for these new compounds, via the ultra-precise arrangement of nanotechnology. A shift from the laboratory and into practical applications then occurred – once again managed and deployed by AI in the most efficient ways possible. In factories and other facilities, 3D printing enabled these superconductors to coalesce in a blur of speed; one of the Singularity-like effects to be witnessed during this time.

READ  a & e | Music by singer + song-writer Paul Dempsey « Kurzweil

Following the discovery of superconductivity and the Meissner effect, it took a century for the first room-temperature superconductor to emerge. Now, after a further hundred years of research and development, the practical applications are clear to see. In 2110, the world is being transformed by new devices and components able to function without electrical resistance and with expulsion of magnetic field lines at room temperatures.


room temperature superconductors future timeline technology 22nd century


In a city of today, it is common to witness floating cars, pods and other vehicles gliding smoothly through the air. These float over a cushion of magnetism and are powered by wireless energy transmitted from pads embedded in the ground. Outside a building, you might come across the surreal sight of a parked vehicle, hanging stationary in the air. Even the building itself may incorporate structures, signs or architectural elements that appear to have nothing below them.

These hovering vehicles have a number of advantages over traditional wheeled transport. By adjusting their altitude when near pedestrians, they can simply drift above them – eliminating the possibility of accidents. This also reduces the incidence of roadkill, which had been responsible for millions of animal deaths per day during the 20th and 21st centuries. The lack of surface contact also eliminates the problem of tyre wear and therefore reduces both air and microplastic pollution produced from vehicles.

Although wheels are still common in transport, they are rapidly being supplanted by superconducting technology, as these benefits are increasingly recognised by city authorities and the required infrastructure is expanded. Some of the wealthier and more hi-tech districts have already upgraded their entire road networks to cater for levitating vehicles. As more and more routes become available, being able to travel in three dimensions rather than two enables faster journey times. Combined with AI for traffic management, congestion is virtually eliminated. Abundant energy is available for these autonomous flying vehicles, with 100% of the world’s electricity now supplied by ultra-efficient clean tech, and multiple redundances are built in to ensure they stay aloft.

Room-temperature superconductors are transforming numerous other areas. Lossless power transmission is now possible, for example – making obsolete the traditional infrastructure for converting low and high voltage AC and enabling perfect transmission over huge distances. Energy storage is being revolutionised too as battery degradation is no longer a problem, with superconducting wires instead capturing and storing electricity indefinitely. Computers, tablets and other electronics can be made to run cooler, more efficiently, and with far less energy consumption.

Other developments include super-powerful and ultra-compact motors, along with machines that once required entire buildings or rooms to operate being viable on much smaller scales. Compact nuclear fusion is now emerging, for example, which is especially useful in space travel. Large-scale science facilities such as particle accelerators now need less energy and capital costs, while high-end medical imaging is more efficient and available in smaller form factors.



Personal health pods are common in homes

In the early 22nd century, many functions previously performed in clinical settings can be automated and supplied to patients at home. Full body scanners providing a wide range of diagnoses and treatments are now a common household appliance, relieving the burden on hospitals.*

These devices come in a variety of form factors, but typically consist of a cylindrical capsule about two metres in size. The occupant either stands (in the case of vertical models) or lies down (in a horizontal configuration)* for the procedure, which takes a matter of seconds. Cameras with sub-nanometre precision obtain images at trillions of frames per second, panning from head to toe while tracking and adjusting for even the slightest movement.

Every region of the body undergoes real-time 3D analysis and is “pinged” for any high-risk changes or abnormalities since the previous scan, to determine spots that need further attention. A summary is then provided to the user, ranked in order of severity. For simple or benign problems, the machine can recommend a drug or other medication. For issues requiring surgery, treatment can be provided by robotic arms/tools, lasers, or nanorobots injected and then guided via a combination of magnets and their own tiny motors. For a transhuman individual, who may already have extensive implants and upgrades, many of these remedies may be unnecessary.

While the medical capabilities of 2110 are vastly improved when compared to a hundred years previously, not every aspect of biology is fully understood yet. Certain rare and unusual conditions, for example, continue to persist in the population and require more specialist intervention than these home-based machines can provide. For the most part, however, treatment of once life-threatening illnesses is now relatively routine. In subsequent decades, a further proliferation of these health pods in tandem with new advances in science leads to cancer mortality being largely eliminated in many countries.*




fields are in military use

combination of several unique technologies, stacked together in layers, has led to a radical new form of protective shielding.* To observers from the previous century, this would resemble the “force
fields” depicted in science fiction movies. When activated, it
provides an instant, near-impenetrable field withstanding hits from
all but the most powerful weaponry.

The outer
layer consists of a supercharged plasma window, shaped into a dome or
sphere by electromagnetic fields. This is hot enough to vaporise most
incoming metals. A secondary
layer underneath contains millions of curved laser beams, producing
a high-energy web that captures projectiles fast or powerful enough
to bypass the plasma window. A third
layer consists of a “lattice” made from trillions of carbon
nanotubes. These microscopic structures are woven together in an instant,
forming a diamond-hard shell repelling objects missed by the other two
layers. If necessary, this can be extended to cover a larger perimeter,
at the cost of decreased strength. Conversely, it can be reduced in
size to provide an even denser and more durable barrier.

The layers
described above can protect against the majority of bullets, bombs and
projectiles. However, they are almost useless against lasers. A fourth
and final layer takes care of this problem. This uses photochromatic particles,
which change their properties when exposed to laser light, effectively
neutralising most directed-energy weapons. An early form of this technology
was seen a century previously, with sunglasses that changed colour when
exposed to sunlight.

In addition
to warzones, these multilayered force fields are used in
a range of other situations. National borders, for example, are more
secure – as are many sources of food and water production. Corporate
spaces and luxury dwellings owned by the rich are also utilising them.
A number of satellites are being fitted with this technology too.


force field technology 22nd century



Large-scale arcologies are emerging as an alternative to traditional cities

The global convergence of environmental issues and resource depletion has forced humanity to drastically readdress the way urban areas are designed. The refugee crisis that emerged in the mid-21st century has now largely subsided, with much of civilization having been relocated to the polar regions of Northern Europe, Russia, Canada and Western Antarctica. In order to accommodate so many people in such a smaller area, cities have become increasingly dense and self-contained.

However, decades of concerted geoengineering efforts have led to success in stabilising global temperatures. Combined with ongoing population pressures, this has prompted governments to begin repopulating some of the abandoned regions in more central latitudes. Despite this progress, most countries still face the problems of resettling hyper-arid, ecologically-ravaged environments. As such, long-hypothesised “arcologies” have begun to emerge as a radical departure from traditional urbanism, condensing an entire city into one massive structure.*

READ  O vento Solar flui em "ziguezague e picos'
cupom com desconto - o melhor site de cupom de desconto cupomcomdesconto.com.br

A precedent for these mega-structures could be seen as far back as the 2020s, with construction of the first centrally-planned, truly sustainable cities.** Later in the 21st century, these principles were adapted for the development of single structures – resulting in supertall skyscrapers that combined vertical farming with residential and commercial space, recycling and production systems for energy, water and other resources.*

By the 22nd century, these towers have evolved into some of the mightiest structures ever built: of such immense volume that some cover several kilometres in girth, typically rise over 1.5 kilometres in height* and accommodate millions of people.** Some are partially or fully merged into mountainsides and other landscapes – resembling enormous ant colonies, and living up to their portmanteau of “architecture” and “ecology”. This scale of engineering has been made possible through advances in materials science, with carbon nanotubes utilised to cope with the massive forces involved. The sheer size and strength of arcologies makes them virtually immune to earthquakes, hurricanes and other disasters.

Each of these self-contained structures holds everything it needs for human survival. Automation is ubiquitous with intelligent robots managing almost all construction and maintenance.* Highly efficient transport systems are located throughout to move travellers horizontally, vertically or diagonally. Advancements in elevator technology have made lifts capable of whisking riders up in a single trip – no matter what height – as opposed to changing halfway up.* This has been accomplished through improved cable design and, more recently, the use of electromagnetic propulsion.* This kind of hyper-dense urban environment allows movement around a city at speeds unheard of in previous centuries.

These radical new designs exemplify an overall trend in recent human development: low environmental impact. Globally, cities and their connecting infrastructure are slowly being retracted, giving over more land to nature. Advances in transportation and civil engineering, combined with nano-scale manufacturing, are enabling humans to operate with little or no impact on the environment. Though classically designed cities still exist, the arcology represents a fundamental shift in the balance between humans and nature.


22nd century arcology technology 2100



is practical

on the scale of quadrillionths of a metre (10-15)
has recently emerged.* This is three orders of magnitude smaller than picotechnology and six orders of magnitude smaller than nanotechnology.

at this scale involves working directly with the finest known structures
of matter – such as quarks and strings – to manipulate the properties
of atoms. This development is a further step towards macro-scale teleportation,
i.e. transportation of objects visible to the naked eye. Significant
breakthroughs in anti-gravity and force field generation will also result
from this.

area that will see major progress is in materials technology. For example,
metals will be produced which are capable of withstanding truly enormous
pressures and tensile forces. The applications for this will be endless,
but perhaps one of the most exciting areas will be in the exploration
of hostile environments – such as probes capable of travelling within
the Sun itself, and tunnelling machines that can penetrate the Earth’s
crust into the layers of magma beneath. Longer term, this development
will pave the way for interstellar ships and the massive forces involved
in lightspeed travel.

Other more
exotic materials are becoming possible – including wholly transparent
metals, highly luminous metals, frictionless surfaces, and ultradense
but extremely lightweight structures. As with
many areas of science, femtoengineering is being guided by advanced
AI, which is now trillions of times more powerful than
unaided human intelligence.


femtoengineering picoengineering femtotechnology picotechnology future materials 22nd century 2100 ray kurzweil



control of earthquakes and tsunamis

now, geophysicists have mapped the entirety of the Earth’s crust and
its faults, extending some 50 km (30 mi) below the surface. Computer
simulations can forecast exactly when and where an earthquake will occur
and its precise magnitude. With a “scheduling” system now
in place, comprehensive preventative measures can be taken against these

For instance,
people know when to stay out of the weakest buildings, away from the
bridges most likely to collapse and otherwise away from anything that
might harm them. Rescue and repair workers can be on duty, with vacations
cancelled and extra workers brought in from other areas. Workers can
be geared up with extra equipment ordered in advance to fix key structures
that may fail in an earthquake. Freeways can be emptied. Dangerous chemical
freight can be prevented from passing through populated areas during
the quake. Aircraft can be stopped from approaching a potentially damaged
runway. Weak water reservoirs can have their water levels lowered in
advance. Tourists can be made to stay away. All of these measures can
substantially reduce casualties and economic disruption.

some nations are going one step further and creating additional systems,
in the form of gigantic engineering projects. To protect the most earthquake-prone
regions, a network of “lubrication wells” is being established.
These man-made channels penetrate deep underground, to the very edge
of the mantle. They work by injecting nanotechnology-based fluid or
gel into fault lines, making it easier for rock layers to slide past
each other. Explosive charges can also be dropped at strategic points,
in zones where the lubrication might be less effective. Instead of sudden,
huge earthquakes, the network induces a series of much smaller earthquakes.
Using this method, an earthquake of magnitude 8.0 can be buffered down
to magnitude 4.0 or lower, causing little or no damage to structures
on the surface. In coastal locations, tsunamis can also be prevented.

This is
a carefully controlled process – requiring heavy use of AI – and is
by no means perfect. There are complex legal and liability issues in
the event of accidents. For instance, damage from human-induced earthquakes
cannot be excused as an “act of God.”

these technical and legal hurdles, it would seem that mankind is gaining
the power to control even the most destructive aspects of nature.*


22nd century future earthquake control



solar system is passing through a million degree cloud of gas

Sun is approaching a boundary between the Local Cloud of interstellar
gas and another cloud of extremely turbulent gas – the latter is the
remnants of supernova explosions that occurred millions of years ago.

The density
of this medium is sufficiently low to pose no threat to Earth or any
other planets. The heliosphere is reformed slightly, and the level of
cosmic radiation entering the magnetosphere increases, but nothing more.

spacecraft and satellites may be damaged by these high energy particles
unless they are upgraded.*


future solar system 2100 22nd century timeline
Credit: SRC/Tentaris,ACh/Maciej Frolow




uploading enters mainstream society

Adequate hardware to support human-level intelligence was available
as far back as the 2020s, thanks to the exponential progress of Moore’s
Law.* This made it possible to form
simulations of neural processes.* However,
the underlying software foundation required for mind uploading
proved to be a vastly greater challenge. Full transfer of human consciousness
into artificial substrates posed enormous technical difficulties, in
addition to raising ethical and philosophical issues.

The sheer
complexity of the brain, and its inherent fragility – along with the
many legislative barriers that stood in the way – meant that it was
nearly a century before such technology reached the mainstream.

Some breakthroughs
occurred in the latter decades of the 21st century, with partial transfer
of memories and thought patterns, allowing some limited experience of
the mind uploading process. However, it was only through the emergence
of picotechnology and strong AI that sufficiently detailed scanning
methods became available. This new generation of machines, being orders
of magnitude faster and more robust, finally bridged the gap between
organic human brains and their synthetic equivalents.

READ  Especialista: precisamos de uma resposta coordenada global ao COVID-19

tested on monkeys, the procedure was eventually offered to certain marginalised
people including death row inmates and terminally ill patients. Once
it could be demonstrated as being safe and reversible, the project garnered
a steady stream of free and healthy volunteers, tempted by this new
form of computerised immortality.

Years of
red tape and legislation followed, including some of the strictest regulations
ever enacted into law. Religious and conservative groups voiced their
objections to what they saw as a fundamental violation of God’s will.
At times, this threatened to postpone the technology indefinitely. Eventually
though, like so many other breakthroughs in science, the zeitgeist moved
on. The level of demand for mind uploading proved to be enormous, and
the treatment became widely available in the 2120s.

citizens have access to special clinics in which their biological brains
can be literally discarded in favour of artificial ones. Rather than
simply “duplicating” a mind, the machine physically shifts
the consciousness, like a sponge soaking up water. The brain is gradually
replaced – piece by piece – so the original personality remains intact
during the transition. This vital aspect of the procedure assuages the
fear which many have of losing their identity.

For the
wealthiest individuals, entire new bodies can be grown, into which the
synthetic brains can be transplanted. These bodies may themselves be
artificial, with options for partially cyborg or fully robotic replacements.
Externally, they are often indistinguishable from real human bodies,
but include many hi-tech add-ons and internal features boosting physical
and mental abilities.

Not everyone
is opting for these types of treatments, however. A significant percentage
view them with extreme suspicion, as though somehow immoral and dehumanising.
With each passing year, society is becoming increasingly fractured,
with an ever-widening divide between those who seek to enhance themselves,
and those who prefer to eschew such technology.


mind uploading software humans artificial brain computer 22nd century future technology singularity immortality
© Kts | Dreamstime.com



civilian settlement of the Moon is underway

a result of various new space elevators, huge numbers of Earth’s
citizens now have rapid, affordable and safe access to space. Dozens
of permanent Moon colonies have been established. Nanotechnology self-assemblers enable these habitats
to be constructed in a matter of hours or days.* Most are concentrated in the southern polar region, which has greater
access to water.*

in genetic engineering mean that humans can be fully adapted to the
gravity of the Moon. In any case, scientists are developing a form of
artificial gravity that will soon become available.

In addition
to basic exploration and surveying, the main occupations for colonists
at the moment are scientific and technological research.
Almost all manual/physical tasks are handled by robots, giving more leisure time for the human

is now a booming industry, with many thousands of people arriving on
the Moon’s surface each year for guided tours, even though VR simulations
can recreate the Moon’s environment in perfect detail. The most popular destinations are
Mons Huygens (the highest mountain), Tycho (a prominent crater visible
from Earth) and the Apollo landing sites.

A very
large telescope is also operational, for long-distance astronomical
observations. The lack of atmosphere and other conditions gives it a
tremendous advantage over Earth-based telescopes.*


future moon colonies 2100 civilian settlement space travel technology 22nd century
© Luca
Oleastri | Dreamstime.com




A North American Union is taking shape

21st century witnessed a dramatic rebalancing of America’s power,
with much of its influence being lost to China and India. However, there were also developments
closer to home, with a remodelling of the relationship to her neighbours.

A gradual
stagnation of the white population, and simultaneous growth of Hispanics,
offered the first hints of what lay ahead. This trend would continue
long into the future, with Latin American immigrants eventually dominating
the southwestern states and Mexico becoming a fully developed nation.*

this, Canada began to experience a population and economic surge almost
unparalleled in its history. Soaring global temperatures were providing
access to a treasure trove of natural resources, previously locked
up in the frozen north – even as the US was being ravaged by drought,
flooding, wildfires and other adverse conditions. With Canada’s environment
now vastly more favourable, newcomers flocked in their millions to
its cheap, wide, green lands.*

decades of further homogenisation and cultural interchange between
each of the three nations, US power has continued to wane, both at
home and abroad. Meanwhile, national borders are becoming increasingly
irrelevant in the world at large. Ongoing globalisation, the birth
of a single world currency, the dominance of AI
in government, a defection of citizens to online “virtual states” (making physical territories less important),
and other technological advances have all contributed to this. Europe
has already formed its own superstate, while parts of Asia are now
converging too.

In light
of all this, the USA begins talks with Canada regarding a North American
Union. With a more globalised, supranational sentiment emerging, they
are gradually unified under a single political system – strengthening
the power and influence of both.

eventually joins too. In later decades, further expansion of the union
occurs with even Cuba, the Dominican Republic and other parts of the
Caribbean seeing integration. By the end of the 22nd century, the
whole of North and South America has joined to become the “American
Union”, paving the way for a truly united world government in
the 23rd century.


north american union future map
Credit: El_bart089



“Perfect” simulations of one cubic metre

In the early 21st century, supercomputers used a simulation technique called lattice quantum chromodynamics, performing calculations by essentially dividing space-time into a four-dimensional grid. With a resolution based on the fundamental physical laws, they could simulate only a tiny portion of the universe accurately – on the scale of one 100-trillionth of a metre, slightly larger than the nucleus of an atom.*

At best, algorithms were able to demonstrate the strong nuclear force among protons and neutrons and its effect on nuclei and their interactions. This was achieved in femto-sized universes where the space-time continuum was replaced by a lattice, with spatial and temporal sizes on the order of several femto-metres or fermis and whose lattice spacings (pixelations) were fractions of fermis. Lattice gauge theory revealed new insights into the nature of matter, but was still fairly limited in scope.


22nd century technology future 2100 2150 timeline simulation grid quantum


However, computer power and information technology in general were growing exponentially. In fact, they had followed a remarkably smooth and predictable trend throughout the 20th century.* This growth rate continued its consistent path in the 21st and 22nd centuries.*

By 2140, a region of space measuring 1 cubic metre can be simulated in near-perfect detail, down to the smallest quantum unit.* This landmark in physics has profound applications. It soon paves the way for larger simulations of two metres, providing absolutely accurate representations of the entire human body. Scientific experiments on these and similar-sized objects can now be literally as controlled as they can be – with data obtained far more reliably and much faster than in real-world and real-time settings.

Holodeck-style environments become possible in the latter half of this century, as these simulations continue to increase in detail and spatial extent, reaching tens of metres and greater. This offers a level of realism that was unavailable with full-immersion virtual reality. To an observer placed in these miniature universes, it would be almost impossible to distinguish reality from fantasy.


quantum simulation sizes 22nd century technology timeline






cupom com desconto - o melhor site de cupom de desconto cupomcomdesconto.com.br

Deixe um comentário

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *